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Exact soliton solutions of coupled nonlinear Schro¨dinger equations: Shape-changing collisions
logic gates, and partially coherent solitons

T. Kanna and M. Lakshmanan*
Centre for Nonlinear Dynamics, Department of Physics, Bharathidasan University, Tiruchirapalli 620 024, India

~Received 16 May 2002; revised manuscript received 31 October 2002; published 25 April 2003!

The different dynamical features underlying soliton interactions in coupled nonlinear Schro¨dinger equations,
which model multimode wave propagation under varied physical situations in nonlinear optics, are studied. In
this paper, by explicitly constructing multisoliton solutions~up to four-soliton solutions! for two-coupled and
arbitrary N-coupled nonlinear Schro¨dinger equations using the Hirota bilinearization method, we bring out
clearly the various features underlying the fascinating shape changing~intensity redistribution! collisions of
solitons, including changes in amplitudes, phases and relative separation distances, and the very many possi-
bilities of energy redistributions among the modes of solitons. However, in this multisoliton collision process
the pairwise collision nature is shown to be preserved in spite of the changes in the amplitudes and phases of
the solitons. Detailed asymptotic analysis also shows that when solitons undergo multiple collisions, there
exists the exciting possibility of shape restoration of at least one soliton during interactions of more than two
solitons represented by three- and higher-order soliton solutions. From an application point of view, we have
shown from the asymptotic expressions how the amplitude~intensity! redistribution can be written as a
generalized linear fractional transformation for theN-component case. Also we indicate how the multisolitons
can be reinterpreted as various logic gates for suitable choices of the soliton parameters, leading to possible
multistate logic. In addition, we point out that the various recently studied partially coherent solitons are just
special cases of the bright soliton solutions exhibiting shape-changing collisions, thereby explaining their
variable profile and shape variation in collision process.

DOI: 10.1103/PhysRevE.67.046617 PACS number~s!: 42.81.Dp, 42.65.Tg, 05.45.Yv
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I. INTRODUCTION

The study of coupled nonlinear Schro¨dinger ~CNLS!
equations is receiving a great deal of attention in recent y
due to their appearance as modeling equations in div
areas of physics such as nonlinear optics@1#, including opti-
cal communications@2#, biophysics @3#, multicomponent
Bose-Einstein condensates at zero temperature@4#, etc. To be
specific, soliton type pulse propagation in multimode fib
@1# and in fiber arrays@5# is governed by a set ofN-CNLS
equations which is not integrable in general. However
becomes integrable for a specific choice of parameters@6,7#.
On the other hand, the recent studies on the coherent@8# and
incoherent@9# beam propagation in photorefractive med
which can exhibit high nonlinearity with extremely low op
tical power, necessitate intense study of CNLS equati
both integrable and nonintegrable. The first experimental
servation of the so-called partially incoherent solitons w
the excitation of a light bulb in a photorefractive mediu
@10# has made this study even more interesting. In this c
text of beam propagation in a Kerr-like photorefractive m
dium, the governing equations are a set ofN-CNLS equa-
tions @11,12#.

We consider the followingN-CNLS equations of the
Manakov type@13# for our study:

iq jz1qjtt12m (
p51

N

uqpu2qj50, j 51,2, . . . ,N, ~1!
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whereqj is the envelope in thej th mode,z and t represent
the normalized distance along the fiber and the retarded t
respectively, in the context of soliton propagation in mul
mode fibers. In the case of fiber arraysqj corresponds to the
j th core. Here 2m gives the strength of the nonlinearity. I
the framework ofN self-trapped mutually incoherent wav
packets propagation in Kerr-like photorefractive med
@11,12#, qj is the j th component of the beam,z and t repre-
sent the coordinates along the direction of propagation
the transverse coordinate, respectively. The interesting p
erty of theN-CNLS equations of form~1! is that they are
integrable equations and possess soliton solutions.

It is obvious from Eq.~1! that for N51 it corresponds to
the standard envelope soliton possessing the integrable
linear Schro¨dinger equation, governing intense optical pul
propagation through a single mode optical fiber@1,14#. For
the N52 case, it reduces to the celebrated Manakov mo
@13# describing intense electromagnetic pulse propagatio
birefringent fiber. Manakov himself has made a detai
asymptotic analysis of the inverse scattering problem ass
ated with system~1! for N52 and identified changes in th
polarization vector@13#. However, no explicit two-soliton
expression was given there. Very recently, Radhakrishn
Lakshmanan, and Hietarinta have obtained the bright o
and two-soliton solutions for this case@15#, and have re-
vealed certain different shape changing~intensity redistribu-
tion! collision properties. These Manakov solitons have be
observed recently in AlxGa12xAs planar waveguides@16#
and precisely this kind of energy exchanging~shape chang-
ing! collisions has been experimentally demonstrated in R
@17#. The results of Ref.@15# have led Jakubowski, Steiglitz
©2003 The American Physical Society17-1
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and Squier@18# to express the energy redistributions as line
fractional transformations so as to construct logic ga
Later, Steiglitz@19# explicitly constructed such logic gate
including the universalNAND gate, based on the shap
changing collision property, and hence pointed out the p
sibility of designing an all optical computer equivalent to
Turing machine, at least in a mathematical sense. Howe
results are scarce forN>2 case of Eq.~1! though they are of
considerable physical importance as mentioned earlier.

The shape-changing collision property exhibited by
2-CNLS equations, which has not been observed, in gen
in any other simpler (111)-dimensional integrable system
requires a detailed analysis to identify the various possib
ties and the underlying potential technological applicatio
In a very recent letter@20#, the present authors have studi
the multicomponentN-CNLS equations and shown tha
shape-changing collisions occur here also with more po
bilities of energy redistribution. It has also been brie
pointed out that the much discussed partially coherent s
tons ~PCSs! @11,12#, which are of variable shape, namel
2-PCS, 3-PCS, . . . , N-PCS, are special cases of th
two-soliton, three-soliton, . . . , N-soliton solutions of the
2-CNLS, 3-CNLS, . . . , N-CNLS equations, respectively
The understanding of variable shapes@11,12# of these re-
cently experimentally observed partially coherent solito
@21# in photorefractive medium and their interesting collisi
behavior will be facilitated by obtaining the higher-ord
soliton solutions of the 2-CNLS and theN-CNLS (N>2)
equations.

In this paper, we wish to undertake a detailed analysis
the dynamical features associated with soliton interaction
multicomponentN-CNLS equations. There exist numero
interesting phenomena which one has to pay attention t
order to realize the full potentialities of these equations a
the underlying different soliton dynamics. Some of the i
portant aspects include the following among others.

~1! Explicit expressions for multisoliton solutions in mu
ticomponent CNLS equations useful for analysis of inter
tions ~as against formal expressions!.

~2! Different soliton interactions involving shape
changing collisions.

~3! Dependence of shape changes and relative separ
distances on amplitudes of the colliding solitons.

~4! Identification of different possibilities of energy redi
tributions among the different modes of the soliton duri
collision and obtaining generalized linear fractional transf
mations.

~5! State restoring properties in multisoliton solutions.
~6! Existence of partially coherent solitons, stationary a

moving, as special cases of the above multisoliton solutio
~7! Identification of multisoliton solutions as logic gate

in multicomponent CNLS equations.
The present paper will be essentially devoted to the

derstanding of multisoliton interactions inN-CNLS equa-
tions, and its application in constructing logic gates and
identifying partially coherent solitons as special cases
multisoliton solutions. In particular, in the present paper,
will deduce explicit expressions for multisoliton solution
~up to four-soliton solutions!, which can be easily genera
04661
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ized to the arbitrary soliton case, 2-CNLS and then for ar
trary N-CNLS equations. To start with, we will briefly con
sider the two-soliton solution to bring out the shap
changing nature of soliton collisions, which can be quantifi
in terms of generalized linear fractional transformatio
~LFTs!, and identify the changes in amplitudes, phases,
relative separation distances among the solitons by carr
out appropriate asymptotic analysis. However, the stand
~shape preserving! elastic collisions can occur for specifi
choice of soliton parameters~initial conditions!. More inter-
estingly, we also point out that when more than two solito
collide successively, say three solitons, there exists the e
ing possibility of restoration of the shape of one of the thr
solitons leaving the other two undergoing shape changes
we prove that the underlying soliton interaction is pairwis
We give explicit conditions for the shape restoring proper
Extending this analysis, one can easily check that in
M-soliton collision, it is possible to restore the states of (M
22) solitons after collisions. Such possibilities lead to t
construction of optical logic gates of different types and ge
eralized linear fractional transformations, as we will show
this paper.

This paper is organized as follows. In Sec. II we brie
present the bilinearization procedure for theN-CNLS equa-
tions. Explicit multisoliton solutions~up to four! of the
2-CNLS equations are obtained in Sec. III. Then the gen
alization of these multisoliton solutions toN-CNLS equa-
tions is given in Sec. IV. The two-soliton collision propertie
of 2-CNLS and their generalization toN-CNLS equations are
studied in Sec. V. In Sec. VI, we present a systematic pro
dure to identify the intensity redistribution amongN modes
in terms of a generalized linear fractional transformati
which is the precursor to the development of logic ga
without interconnecting discrete components@18#. The inter-
esting features of the higher-order soliton solutions, nam
the pairwise nature of collision of solitons, and the sha
restoration property of the state of one soliton only in
three-soliton collision process are presented in Sec. VII
Sec. VIII we introduce the possibility of looking at the brigh
soliton solutions as logic gates, as an alternate point of vi
Then in Sec. IX we demonstrate explicitly that for speci
choices of the parameters of the bright soliton solutio
various PCSs reported in the literature result. The collis
properties of PCSs and the salient features of multisoli
complexes are also discussed. Section X is allotted fo
conclusion. Also in the Appendix we present the expli
form of the four-soliton solution.

II. BILINEARIZATION

The set ofN-CNLS equations~1! has been found to be
completely integrable@6,7# and admits exact bright soliton
solutions. Their explicit forms can be obtained by using H
rota’s bilinearization method@22#, which is straightforward.
Any of the other soliton producing methodologies in pri
ciple is equally applicable; however, this paper is not co
cerned with the relative merits of the various methodologi

To start with, we make the bilinearizing transformatio
7-2
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~which can be identified systematically from the Laurent e
pansion@6#!

qj5
g( j )

f
, j 51,2, . . . ,N ~2!

to Eq. ~1!. This results in the following set of bilinear equa
tions:

~ iD z1Dt
2!g( j ) f 50, j 51,2, . . . ,N, ~3a!

Dt
2f f 52m (

n51

N

g(n)g(n)* , ~3b!

where * denotes the complex conjugate,g( j )’s are complex
functions, whilef (z,t) is a real function and Hirota’s bilinea
operatorsDz andDt are defined by

Dz
nDt

m~ab!

5S ]

]z
2

]

]z8
D nS ]

]t
2

]

]t8
D m

a~z,t !b~z8,t8!u(z5z8,t5t8) .

~3c!

The above set of equations can be solved by introducing
following power series expansions forg( j )’s and f:

g( j )5xg1
( j )1x3g3

( j )1¯, j 51,2, . . . ,N, ~4a!

f 511x2f 21x4f 41¯, ~4b!

wherex is the formal expansion parameter. The resulting
of equations, after collecting the terms with the same po
in x, can be solved recursively to obtain the forms ofg( j )’s
andf. Though a formal closed form solution of theN-soliton
expression of Eq.~1! as a ratio of two (N3N) determinants
can be given@23#, it becomes necessary to deduce the
plicit expressions~which is nontrivial! in order to understand
the interaction properties at least for the lower-order solito
In the following section we will only present the minimum
details.

III. MULTISOLITON SOLUTIONS FOR NÄ2 CASE

As a prelude to understanding the nature of soliton so
tions for arbitraryN-CNLS equations, we first present th
bright one- and two- soliton solutions of Eq.~1! with N52
~Manakov! case as given in Ref.@15# and then extend the
analysis to obtain the explicit higher-order soliton solutio

A. One-soliton solution

After restricting the power series expansion~4! as

g( j )5xg1
( j ) , j 51,2, f 511x2f 2 ~5!

and solving the resulting set of linear partial different
equations recursively, one can write down the explicit o
soliton solution as
04661
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S q1

q2
D 5S a1

(1)

a1
(2)D eh1

11eh11h1* 1R
5S A1

A2
D k1Reih1I

coshS h1R1
R

2 D ,

~6!

where

h15k1~ t1 ik1z!,Aj5
a1

( j )

@m~ ua1
(1)u21ua1

(2)u2!#1/2
, j 51,2

and

eR5
m~ ua1

(1)u21ua1
(2)u2!

~k11k1* !2
.

Note that this one-soliton solution is characterized by th
arbitrary complex parametersa1

(1) , a1
(2) , and k1. Here the

amplitudes of the soliton in the first and second compone
~modes! are given byk1RA1 andk1RA2, respectively, subjec
to the conditionuA1u21uA2u251/m, while the soliton veloc-
ity in both the modes is given by 2k1I . Here k1R and k1I
represent the real and imaginary parts of the complex par
eterk1. The quantity

R

2k1R
5

1

2k1R
ln Fm~ ua1

(1)u21ua1
(2)u2!

~k11k1* !2 G
denotes the position of the soliton.

B. Two-soliton solution

The two-soliton solution of the integrable 2-CNLS syste
has been obtained in Ref.@15# after terminating power serie
~4! as

g( j )5xg1
( j )1x3g3

( j ) , j 51,2, ~7a!

f 511x2f 21x4f 4 , ~7b!

and again solving the resultant linear partial different
equations recursively . Then the explicit form of the tw
soliton solution can be written as

qj5
a1

( j )eh11a2
( j )eh21eh11h1* 1h21d1 j1eh11h21h2* 1d2 j

D
,

j 51,2, ~8a!

where

D511eh11h1* 1R11eh11h2* 1d01eh1* 1h21d0* 1eh21h2* 1R2

1eh11h1* 1h21h2* 1R3. ~8b!

In Eqs.~8!, we have defined

h i5ki~ t1 ik iz!, ed05
k12

k11k2*
,

7-3
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eR15
k11

k11k1*
, eR25

k22

k21k2*
,

ed1 j5
~k12k2!~a1

( j )k212a2
( j )k11!

~k11k1* !~k1* 1k2!
,

ed2 j5
~k22k1!~a2

( j )k122a1
( j )k22!

~k21k2* !~k11k2* !
,

eR35
uk12k2u2

~k11k1* !~k21k2* !uk11k2* u2
~k11k222k12k21!,

~8c!

and

k i l 5

m (
n51

2

a i
(n)a l

(n)*

~ki1kl* !
, i ,l 51,2. ~8d!

The above most general bright two-soliton solution is ch
acterized by six arbitrary complex parametersk1 , k2 , a1

( j ) ,
04661
r-

anda2
( j ) , j 51,2, and it corresponds to the collision of tw

bright solitons. Note that in Ref.@15#, d11, d12, d21, andd22

are called asd1 , d18 , d2, andd28 , respectively. The redefine
quantitiesd i j ’s, i , j 51,2, are now used for notational sim
plicity.

C. Three-soliton solution

The two-soliton solution itself is very difficult to derive
and complicated to analyze@15#. So obtaining the three
soliton solution is a more laborious and tedious task. Ho
ever, we have successfully obtained the explicit form of
bright three-soliton solution also. In order to obtain the thre
soliton solution of Eq.~1! for the N52 case we terminate
power series~4a! and ~4b! as

g( j )5xg1
( j )1x3g3

( j )1x5g5
( j ) , ~9a!

f 511x2f 21x4f 41x6f 6 , j 51,2. ~9b!

Substitution of Eq.~9! into bilinear Eqs.~3a! and~3b! yields
a set of linear partial differential equations at various pow
of x. The three-soliton solution consistent with these eq
tions is
qj5
a1

( j )eh11a2
( j )eh21a3

( j )eh31eh11h1* 1h21d1 j1eh11h1* 1h31d2 j1eh21h2* 1h11d3 j

D

1
eh21h2* 1h31d4 j1eh31h3* 1h11d5 j1eh31h3* 1h21d6 j1eh1* 1h21h31d7 j1eh11h2* 1h31d8 j

D

1
eh11h21h3* 1d9 j1eh11h1* 1h21h2* 1h31t1 j1eh11h1* 1h31h3* 1h21t2 j

D
1

eh21h2* 1h31h3* 1h11t3 j

D
, j 51,2, ~10a!

where

D511eh11h1* 1R11eh21h2* 1R21eh31h3* 1R31eh11h2* 1d101eh1* 1h21d10* 1eh11h3* 1d201eh1* 1h31d20* 1eh21h3* 1d30

1eh2* 1h31d30* 1eh11h1* 1h21h2* 1R41eh11h1* 1h31h3* 1R51eh21h2* 1h31h3* 1R61eh11h1* 1h21h3* 1t101eh11h1* 1h31h2* 1t10*

1eh21h2* 1h11h3* 1t201eh21h2* 1h1* 1h31t20* 1eh31h3* 1h11h2* 1t301eh31h3* 1h1* 1h21t30* 1eh11h1* 1h21h2* 1h31h3* 1R7.

~10b!
Here

h i5ki~ t1 ik iz!, i 51,2,3, ~10c!

ed1 j5
~k12k2!~a1

( j )k212a2
( j )k11!

~k11k1* !~k1* 1k2!
,

ed2 j5
~k12k3!~a1

( j )k312a3
( j )k11!

~k11k1* !~k1* 1k3!
,

ed3 j5
~k12k2!~a1

( j )k222a2
( j )k12!

~k11k2* !~k21k2* !
,

ed4 j5
~k22k3!~a2

( j )k322a3
( j )k22!

~k21k2* !~k2* 1k3!
,

ed5 j5
~k12k3!~a1

( j )k332a3
( j )k13!

~k31k3* !~k3* 1k1!
,

7-4
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ed6 j5
~k22k3!~a2

( j )k332a3
( j )k23!

~k3* 1k2!~k3* 1k3!
,

ed7 j5
~k22k3!~a2

( j )k312a3
( j )k21!

~k1* 1k2!~k1* 1k3!
,

04661
ed8 j5
~k12k3!~a1

( j )k322a3
( j )k12!

~k11k2* !~k2* 1k3!
,

ed9 j5
~k12k2!~a1

( j )k232a2
( j )k13!

~k11k3* !~k21k3* !
,

et1 j5
~k22k1!~k32k1!~k32k2!~k2* 2k1* !

~k1* 1k1!~k1* 1k2!~k1* 1k3!~k2* 1k1!~k2* 1k2!~k2* 1k3!

3@a1
( j )~k21k322k22k31!1a2

( j )~k12k312k32k11!1a3
( j )~k11k222k12k21!#,

et2 j5
~k22k1!~k32k1!~k32k2!~k3* 2k1* !

~k1* 1k1!~k1* 1k2!~k1* 1k3!~k3* 1k1!~k3* 1k2!~k3* 1k3!

3@a1
( j )~k33k212k31k23!1a2

( j )~k31k132k11k33!1a3
( j )~k23k112k13k21!#,

et3 j5
~k22k1!~k32k1!~k32k2!~k3* 2k2* !

~k2* 1k1!~k2* 1k2!~k2* 1k3!~k3* 1k1!~k3* 1k2!~k3* 1k3!

3@a1
( j )~k22k332k23k32!1a2

( j )~k13k322k33k12!1a3
( j )~k12k232k22k13!#, ~10d!
eRm5
kmm

km1km*
, m51,2,3, ed105

k12

k11k2*
,

ed205
k13

k11k3*
, ed305

k23

k21k3*
,

eR45
~k22k1!~k2* 2k1* !

~k1* 1k1!~k1* 1k2!~k11k2* !~k2* 1k2!

3@k11k222k12k21#,

eR55
~k32k1!~k3* 2k1* !

~k1* 1k1!~k1* 1k3!~k3* 1k1!~k3* 1k3!

3@k33k112k13k31#,
eR65
~k32k2!~k3* 2k2* !

~k2* 1k2!~k2* 1k3!~k3* 1k2!~k31k3* !

3@k22k332k23k32#,

et105
~k22k1!~k3* 2k1* !

~k1* 1k1!~k1* 1k2!~k3* 1k1!~k3* 1k2!

3@k11k232k21k13#,

et205
~k12k2!~k3* 2k2* !

~k2* 1k1!~k2* 1k2!~k3* 1k1!~k3* 1k2!

3@k22k132k12k23#,

et305
~k32k1!~k3* 2k2* !

~k2* 1k1!~k2* 1k3!~k3* 1k1!~k3* 1k3!

3@k33k122k13k32#,
eR75
uk12k2u2uk22k3u2uk32k1u2

~k11k1* !~k21k2* !~k31k3* !uk11k2* u2uk21k3* u2uk31k1* u2

3@~k11k22k332k11k23k32!1~k12k23k312k12k21k33!1~k21k13k322k22k13k31!#, ~10e!
7-5
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and

k i l 5

m (
n51

2

a i
(n)a l

(n)*

~ki1kl* !
, i ,l 51,2,3. ~10f!

The above three-soliton solution represents three-soliton
teraction in the 2-CNLS equations and is characterized
nine arbitrary complex parametersa i

( j )’s and ki ’s, i 51,2,3,
j 51,2. One can also check that the above general th
soliton solution of the 2-CNLS equations reduces to that
the solution given in Ref.@24# for the particular case o
a3

(1)51. Further, the form in which we have presented
solution eases the complexity in generalizing the solution
multicomponent case as well as to higher-order soliton s
tions.

D. Four-soliton solution

The expression is quite lengthy, but it is written explicit
in terms of exponential functions so as to check the pairw
nature of collisions. We indicate the form in the Append
One can generalize these expressions for the arbitraryN case
also. However, it is too complicated to present the expl
form and so we desist from doing so.

IV. MULTISOLITON SOLUTIONS FOR THE N-CNLS
EQUATIONS

As mentioned in the Introduction, results are scarce
Eq. ~1! with N.2 and there exists a large class of physi
systems in which theN-CNLS equations occur naturally
Further, in the context of spatial solitons in photorefract
media, each fundamental soliton can be ‘‘spread out’’ in
several incoherent components@25#, as defined by the polar
ization vectors. Obtaining one-, two-, and higher-order s
ton solutions ofN-CNLS equations will be of considerabl
significance in these topics. In order to study the solut
properties of such systems we consider integrableN-CNLS
equations~1!. Following the procedure mentioned in the pr
ceding section we obtain the one-, two-, and three-~as well
as four-! soliton solutions ofN-CNLS equations as given
below. Particularly the so-called partially coherent solito
will turn out to be special cases of these soliton solutio
~see Sec. IX!.
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A. One-soliton solution

The one-soliton solution of Eq.~1! is obtained as

~q1 ,q2 , . . . ,qN!T5k1Reih1IsechS h1R1
R

2 D
3~A1 ,A2 , . . . ,AN!T, ~11!

where h15k1(t1 ik1z), Aj5a1
( j )/D, D

5@m(( j 51
N ua1

( j )u2)#1/2, eR5D2/(k11k1* )2, a1
( j ) and k1 , j

51,2 . . . ,N, are (N11) arbitrary complex parameters. Fu
ther k1RAj gives the amplitude of thej th mode (j
51,2, . . . ,N) and 2k1I is the soliton velocity in all theN
modes.

B. Two-soliton solution

The two-soliton solution of Eq.~1! can be obtained by
following the procedure given for the two-component case
can be written as

qj5
a1

( j )eh11a2
( j )eh21eh11h1* 1h21d1 j1eh11h21h2* 1d2 j

D
,

j 51,2, . . . ,N, ~12!

where the denominatorD and the coefficientseR1, eR2, eR3,

ed0, ed0* , ed1 j , anded2 j , bear the same form as given in Eq
~8c! and ~8d!, except thatj now runs from 1 toN and that
k i l ’s are redefined as

k i l 5

m (
n51

N

a i
(n)a l

(n)*

~ki1kl* !
, i ,l 51,2. ~13!

One may also note that the above two-soliton solution
pends on 2(N11) arbitrary complex parmetersa1

( j ) , a2
( j ) ,

k1, andk2 , j 51,2, . . . ,N.

C. Three-soliton solution

Following the procedure given in the preceding sect
we obtain the three-soliton solution to theN-CNLS equations
as
qj5
a1

( j )eh11a2
( j )eh21a3

( j )eh31eh11h1* 1h21d1 j1eh11h1* 1h31d2 j1eh21h2* 1h11d3 j

D

1
eh21h2* 1h31d4 j1eh31h3* 1h11d5 j1eh31h3* 1h21d6 j1eh1* 1h21h31d7 j1eh11h2* 1h31d8 j

D

1
eh11h21h3* 1d9 j1eh11h1* 1h21h2* 1h31t1 j

D
1

eh11h1* 1h31h3* 1h21t2 j1eh21h2* 1h31h3* 1h11t3 j

D
, j 51,2, . . . ,N.

~14a!
7-6
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Here also the denominatorD and all the other quantities ar
the same as those given under Eq.~10! except for the redefi-
nition of k i l ’s as

k i l 5

m (
n51

N

a i
(n)a l

(n)*

~ki1kl* !
, i ,l 51,2,3. ~14b!

It can be observed from the above expression that as
number of solitons increases, the complexity also increa
and the present three-soliton solution is characteri
by 3(N11) complex parametersa1

( j ) , a2
( j ) , a3

( j ) , j
51,2, . . . ,N, k1 , k2, andk3.

The above procedure can be generalized to obtain
four-soliton solution and higher-order soliton solutions
discussed in the case of 2-CNLS equations straightforwar
and one can predict that theN-soliton solution ofN-CNLS
will be dependent onN(N11) arbitrary complex param
eters.

V. SHAPE-CHANGING NATURE OF SOLITON
INTERACTIONS AND INTENSITY REDISTRIBUTIONS

The remarkable fact about the above bright soliton so
tions of the integrable CNLS system is that they exhibit f
cinating shape-changing~intensity redistribution or energy
exchange! collisions as we will see below. This interestin
behavior has been reported in Ref.@15# for the two-soliton
solution of the 2-CNLS equations. In a very recent let
@20#, the present authors have constructed the two-sol
solution of the 3-CNLS and generalized it toN-CNLS, for
arbitraryN, and briefly indicated similar shape-changing c
lision dynamics of two interacting bright solitons. As the
N-CNLS equations arise in diverse areas of physics as m
tioned in the Introduction, it is of interest to analyze t
interaction properties of the soliton solutions of 2-, 3-, a
N-CNLS equations. The collision dynamics can be well u
derstood by making an appropriate asymptotic analysis
the soliton solutions given in the previous sections. Such
analysis will then be used to identify suitable generaliz
linear fractional transformations in the following section,
obtain possible multistate logic.

A. Asymptotic analysis of two-soliton solution
of 2-CNLS equations

To start with we shall briefly review the collision prope
ties associated with the two-soliton solution~8! of the
2-CNLS equations discussed in Ref.@15# in order to extend
the ideas of theN-CNLS case. Without loss of generality, w
assume thatkjR.0 and k1I.k2I , kj5kjR1 ik jI , j 51,2,
which corresponds to a head-on collision of the solitons~for
the casek1I5k2I , see Sec. IX!. For the above parametri
choice, the variablesh jR’s ~real part of h j ) for the two-
solitons behave asymptotically as~i! h1R;0, h2R→6` as
z→6` and ~ii ! h2R;0, h1R→7` asz→6`. This leads
to the following asymptotic forms for the two-soliton solu
tion. ~For other choices ofkiR andkiI , i 51,2, similar analy-
sis as given below can be performed straightforwardly.!

(i) Before collision (limit z→2`).
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(a) Soliton 1(h1R'0,h2R→2`):

S q1

q2
D→S A1

12

A2
12D k1Reih1IsechS h1R1

R1

2 D , ~15a!

where

S A1
12

A2
12D 5S a1

(1)

a1
(2)D e2R1/2

~k11k1* !
. ~15b!

The quantityeR1 is defined in Eq.~8c!.
(b) Soliton 2(h2R'0,h1R→`):

S q1

q2
D→S A1

22

A2
22D k2Reih2IsechS h2R1

~R32R1!

2 D , ~16a!

where

S A1
22

A2
22D 5S ed11

ed12
D e2(R11R3)/2

~k21k2* !
. ~16b!

The quantities in the above expression are again define
Eq. ~8c!.

(ii) After collision (limit z→`). Similarly, for z→`, we
have the following forms for solitonsS1 andS2.

(a) Soliton 1(h1R'0,h2R→`):

S q1

q2
D→S A1

11

A2
11D k1Reih1IsechS h1R1

~R32R2!

2 D , ~17a!

where

S A1
11

A2
11D 5S ed21

ed22
D e2(R21R3)/2

~k11k1* !
. ~17b!

(b) Soliton 2(h2R'0,h1R→2`):

S q1

q2
D→S A1

21

A2
21D k2Reih2IsechS h2R1

R2

2 D , ~18a!

where

S A1
21

A2
21D 5S a2

(1)

a2
(2)D e2R2/2

~k21k2* !
. ~18b!

In the above expressions forS1 and S2 after collision the
quantitieseR2,eR3, ed21, anded22 are defined in Eq.~8c!.

B. Asymptotic analysis of the two-soliton solution
of N-CNLS equations

We require the asymptotic forms of the two-soliton so
tions for arbitraryN case in the following section in order t
identify a generalized linear fractional transformation for t
amplitude redistribution among the components. To get
asymptotic forms of two-soliton solution of theN-CNLS
case, as may be checked by a careful asymptotic ana
7-7
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along the lines of theN52 case, we simply increase th
number of components in theA6 vectors above up to
N@A65(A1

6 ,A2
6 , . . . ,AN

6)T# by adding two more complex
parametersa1

( i ) , a2
( i ) ,i 53,4, . . . ,N, to each of the compo

nents so that the forms of the quantitieseR1,eR2,eR3,ed11,
ed12,ed21,ed22 in Eq. ~8c! remain the same as above except
the replacement of the range of the summation ink i l @Eq.
~8d!# from n51,2 to n51,2, . . . ,N. As an example, in the
following we give the asymptotic forms of two-soliton solu
tion of the N-CNLS equations withN53, for the caseklR
.0,l 51,2, and k1I.k2I . For other possibilities similar
analysis can be made.

(i) Before collision (limit z→2`).
(a) Soliton 1(h1R'0,h2R→2`):

S q1

q2

q3

D 'S A1
12

A2
12

A3
12
D k1Reih1IsechS h1R1

R1

2 D , ~19a!

where

S A1
12

A2
12

A3
12
D 5S a1

(1)

a1
(2)

a1
(3)
D e2R1/2

~k11k1* !
. ~19b!

(b) Soliton 2(h2R'0,h1R→`):

S q1

q2

q3

D 'S A1
22

A2
22

A3
22
D k2Reih2IsechS h2R1

~R32R1!

2 D , ~20a!

where

S A1
22

A2
22

A3
22
D 5S ed11

ed12

ed13

D e2(R11R3)/2

~k21k2* !
. ~20b!

(ii) After collision (limit z→`).
(a) Soliton 1(h1R'0,h2R→`):

S q1

q2

q3

D 'S A1
11

A2
11

A3
11
D k1Reih1IsechS h1R1

~R32R2!

2 D , ~21a!

where

S A1
11

A2
11

A3
11
D 5S ed21

ed22

ed23

D e2(R21R3)/2

~k11k1* !
. ~21b!

(b) Soliton 2(h2R'0,h1R→2`):
04661
r

S q1

q2

q3

D 'S A1
21

A2
21

A3
21
D k2Reih2IsechS h2R1

R2

2 D , ~22a!

where

S A1
21

A2
21

A3
21
D 5S a2

(1)

a2
(2)

a2
(3)
D e2R2/2

~k21k2* !
. ~22b!

In the above expressions, the forms of the quantitieseRj ,
ed i j ,i 51,2, j 51,2,3, can be identified from Eqs.~12! and
~13! with N53.

1. Intensity redistribution

The above analysis clearly shows that due to the inte
tion between two copropagating solitonsS1 and S2 in an
N-CNLS system, their amplitudes change fromAj

12k1R and
Aj

22k2R to Aj
11k1R andAj

21k2R , j 51,2, . . . ,N, respectively.
However, during the interaction process the total energy
each of the solitons is conserved, that is,

(
j 51

N

uAj
16u25(

j 51

N

uAj
26u25

1

m
. ~23!

Note that this is a consequence of the conservation ofL2

norm. Another noticeable observation of this interaction p
cess is that one can observe from the equation of motion~1!
itself, that the intensity of each of the modes is separa
conserved, that is,

E
2`

`

uqj u2dz5const, j 51,2, . . . ,N. ~24!

The above two equations~23! and~24! ensure that in a two-
soliton collision process~as well as in multisoliton collision
processes as will be seen later on!, the total intensity of in-
dividual solitons in all theN modes are conserved along wi
conservation of intensity of individual modes~even while
allowing an intensity redistribution!. This is a striking feature
of the integrable nature of multicomponent CNLS equatio
~1!. The change in the amplitude of each of the solitons
the j th mode can be obtained by introducing the transit
matrix Tj

l , j 51,2, . . . ,N, l 51,2, such that

Aj
l 15Tj

l Aj
l 2 . ~25a!

The form ofTj
l ’s can be obtained from the above asympto

analysis as

Tj
15S a2

a2*
DAk21

k12

F 12l2S a2
( j )

a1
( j )D

A12l1l2

G , j 51,2, . . . ,N,

~25b!

where
7-8
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a25~k21k1* !F ~k12k2! (
n51

N

a1
(n)a2

(n)* G1/2

, ~25c!

and

Tj
252S a1

a1*
DAk21

k12F A12l1l2

12l1S a1
( j )

a2
( j )D G , j 51,2, . . . ,N,

~25d!

in which

a15~k11k2* !F ~k12k2! (
n51

N

a1
(n)* a2

(n)G1/2

. ~25e!

In the above expressionsl15k21/k11 and l25k12/k22,
wherek i l ’s, i ,l 51,2, are defined in Eq.~13!. Then the inten-
sity exchange in solitonsS1 and S2 due to collision can be
obtained by taking the absolute square of Eqs.~25b! and
~25d!, respectively.

The above expressions for the components of the tra
tion matrix implies that in general there is a redistribution
the intensities in theN modes of both the solitons after co
lision. Only for the special case

a1
(1)

a2
(1)

5
a1

(2)

a2
(2)

5•••5
a1

(N)

a2
(N)

~26!

does the standard elastic collision occur. For all other cho
of the parameters, shape-changing~intensity redistribution!
collision occurs.

The two conservation relations~23! and ~24! allow the
intensity redistribution to take place in definite ways. In ge
eral, for N-CNLS equations the intensity redistribution in
two-soliton collision can occur in 2N22 ways. DenotingE
and S as enhancement and suppression, respectively, e
complete or partial, of the intensity of corresponding mod
we table below~Table I! the possibilities of intensity redis

TABLE I. Possible combinations of intensity redistributio
among the modes of solitonS1 in the two-soliton collision process

~a! N52 case
Case q1 q2

1 E S
2 S E

~b! N53 case
Case q1 q2 q3

1 E S S
2 S E S
3 S S E
4 S E E
5 E S E
6 E E S
04661
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tribution for the caseN52 andN53.
For each of the above choices ofS1, the form of S2 is

determined by the conserved quantity~24! for the intensities
of the individual modes. For illustrative purposes, we ha
shown in Figs. 1 and 2 a few of such possibilities of intensit
switching for theN52 andN53 cases, respectively.

2. Phase shifts

Further, from the asymptotic forms of the solitonsS1 and
S2, it can be observed that the phases of solitonsS1 andS2
also change during a collision process and that the ph
shifts are now not only functions of the parametersk1 andk2

but also dependent ona i
( j )’s, i 51,2, j 51,2, . . . ,N. The

phase shift suffered by the solitonS1 during collision is

F15
~R32R12R2!

2

5S 1

2D lnF uk12k2u2~k11k222k12k21!

uk11k2* u2k11k22
G , ~27!

wherek i l ’s are defined in Eq.~13!. Similarly the solitonS2
suffers a phase shift

F252
~R32R22R1!

2
52F1. ~28!

Then the absolute value of phase shift suffered by the t
solitons is

uFu5uF1u5uF2u. ~29!

Let us consider the caseN52. For a better understanding
let us consider the pure elastic collision case (a1

(1) :a2
(1)

5a1
(2) :a2

(2)) corresponding to parallel modes. Here the a
solute phase shift@see Eq.~29!# can be obtained as

uFu5U lnF uk12k2u2

uk11k2* u2GU52U lnF uk12k2u

uk11k2* uGU . ~30!

Similarly for the case corresponding to orthogonal mod
(a1

(1) :a2
(1)5`,a1

(2) :a2
(2)50) the absolute phase shift i

found from Eqs.~27!–~29! to be

uFu5U lnF uk12k2u

uk11k2* uGU . ~31!

The absolute value of the phase shift takes intermediate
ues for other choices of the parametersa i

( j )’s, i 51,2, j
51,2, . . . ,N. Thus phase shifts do vary depending ona i

( j )’s
~amplitudes! for fixed ki ’s. In Fig. 3, we plot the change o
uFu as a function ofa1

(1) , when it is real, ata1
(2)5a2

(2)

51, a2
(1)5(39180i )/89, k1511 i , and k2522 i . Similar

analysis can be done for theN53 case and for the arbitrar
N case.
7-9
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FIG. 1. Two distinct possibilities of the shape-changing two-soliton collision in the integrable 2-CNLS system. The parame
chosen as~a! k1511 i , k2522 i , a1

(1)5a1
(2)5a2

(2)51, a2
(1)5(39180i )/89; ~b! k1511 i , k2522 i , a1

(1)50.0210.1i , a1
(2)5a2

(1)5a2
(2)

51.
p

th
e

in
at

an
.
lin
y
f
o

to

o
ton

o

be
3. Relative separation distance

Ultimately, the above phase shifts make the relative se
ration distancet12

6 between the solitons@that is, the position
of S2 ~at z→6`) minus position ofS1 ~at z→6`)] also to
vary during collision, depending upon the amplitudes of
modes. The change in the relative separation distanc
found to be

Dt125t12
2 2t12

1 5
~k1R1k2R!

k1Rk2R
F1. ~32!

Thus as a whole the intensity profiles of the two-solitons
different modes as well as the phases, and hence the rel
separation distance are nontrivially dependent ona i

( j )’s and
vary as a result of soliton interaction.

VI. GENERALIZED LINEAR FRACTIONAL
TRANSFORMATIONS AND MULTISTATE LOGIC

The intensity redistribution was characterized by the tr
sition matrix as given in Eq.~25! in the preceding section
Interestingly, this redistribution can also be viewed as a
ear fractional transformation~LFT! as already pointed out b
Jakubowskiet al. @18#. However, no systematic derivation o
such a connection was made. In this section, we point
that in fact a reformulation of Eq.~25! allows one to deduce
such an LFT in a systematic way. This in turn allows us
04661
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generalize the procedure to theN-component case leading t
a generalized LFT for the amplitude change during soli
collision thereby leading to a multistate logic.

A. NÄ2 case

For the N52 case, the amplitude change in the tw
modes of soliton 1 after interaction given by Eq.~25! can be
reexpressed by the following transformation, which can
deduced from comparison of expressions~15b! and ~17b!:

A1
115GC11A1

121GC12A2
12 ,

A2
115GC21A1

121GC22A2
12 . ~33a!

Here

G5G~A1
12 ,A2

12 ,A1
22 ,A2

22!

[S a2

a2*
D F 1

~a1
(1)a2

(1)* 1a1
(2)a2

(2)* !~a2
(1)a2

(1)* 1a2
(2)a2

(2)* !
G

3F 1

uk12u2
2

1

k11k22
G21/2

, ~33b!

in which a2 is given in Eq.~25c!. The forms ofCi j ’s, i , j
51,2, read as
7-10



-

g

EXACT SOLITON SOLUTIONS OF COUPLED . . . PHYSICAL REVIEW E67, 046617 ~2003!
FIG. 2. Intensity profiles of the
three modes of the two-soliton so
lution in a waveguide described
by the 3-CNLS@Eq. ~1! with N
53] showing different dramatic
scenarios of the shape-changin
collision for various choices of
parameters.
.
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C115a2
(1)a2

(1)* ~k12k2!1a2
(2)a2

(2)* ~k11k2* !, ~33c!

C1252a2
(1)a2

(2)* ~k21k2* !, ~33d!

C2152a2
(2)a2

(1)* ~k21k2* !, ~33e!

C225a2
(1)a2

(1)* ~k11k2* !1a2
(2)a2

(2)* ~k12k2!. ~33f!

Note that the coefficientsCi j ’s are independent ofa1
( j )’s and

so of A1
12 and A2

12 , that is thea parameters of soliton 1
Then from Eqs.~33a! the ratios of theAi

j 6’s, i , j 51,2, can be
connected through an LFT. For example, for soliton 1, fro
Eq. ~33a!,

r1,2
115

A1
11

A2
11

5
C11r1,2

121C12

C21r1,2
121C22

, ~34!

wherer1,2
125A1

12/A2
12 , in which the superscripts represe

the underlying soliton and the subscripts represent the co
sponding modes. The quantitiesr1,2

11 , r1,2
12 ,C11,C12,C21,

C22, in Eq. ~34! are same as the quantitiesrR ,r1 , @(1
2h* )/rL* 1rL#, h* rL /rL* ,h* and @(12h* )rL11/rL* #, re-
spectively, given by Eq.~9! in Ref. @18# in an adhocway.
Thus the state ofS1 before and after interaction is characte
ized by r1,2

12 and r1,2
11 , respectively. It is to be noticed tha

during collisionki ’s, i 51,2, are unaltered. The LFT has be
04661
e-

profitably used in Ref.@19# to construct logic gates, assoc
ated with the binary logicr5@0,1#. Similar analysis can be
done for the soliton 2 also.

B. NÄ3 case

Extending the above analysis, straightforwardly one c
relate theAj

16’s, j 51,2,3, for soliton 1, from Eqs.~19b! and
~21b!, as

A1
115GC11A1

121GC12A2
121GC13A3

12 , ~35a!

A2
115GC21A1

121GC22A2
121GC23A3

12 , ~35b!

A3
115GC31A1

121GC32A2
121GC33A3

12 , ~35c!

where

FIG. 3. Plot of the magnitude of phase shift as a function of
parametera1

(1) , when it is real~for illustrative purposes!; see Eqs.
~29!–~31!. The other parameters are chosen ask1511 i , k252
2 i , a1

(2)5a2
(2)51, anda2

(1)5(39180i )/89.
7-11
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G5G~A1
12 ,A2

12 ,A3
12 ,A1

22 ,A2
22 ,A3

22!

[S a2

a2*
D F 1

~a1
(1)a2

(1)* 1a1
(2)a2

(2)* 1a1
(3)a2

(3)* !~a2
(1)a2

(1)* 1a2
(2)a2

(2)* 1a2
(3)a2

(3)* !
GF 1

uk12u2
2

1

k11k22
G21/2

, ~35d!
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in which a2’s are redefined as

a25~k21k1* !@~k12k2!~a1
(1)a2

(1)* 1a1
(2)a2

(2)*

1a1
(3)a2

(3)* !#1/2, ~35e!

andk i l ’s can be written from Eq.~13! with N53. Note that
the form of G is a straightforward extension of theN52
case. In the above equations the coefficientsCi j ’s, i , j
51,2,3, for the 3-CNLS case can be written down straig
forwardly by generalizing expressions~33! corresponding to
the two-soliton solution of the two-component case.

Thus in the two-soliton collision process of theN53
case, for soliton 1 we obtain the generalized Mo¨bius trans-
formation,

r1,3
115

A1
11

A3
11

5
C11r1,3

121C12r2,3
121C13

C31r1,3
121C32r2,3

121C33

, ~36a!

r2,3
115

A2
11

A3
11

5
C21r1,3

121C22r2,3
121C23

C31r1,3
121C32r2,3

121C33

, ~36b!

where r1,3
125A1

12/A3
12 and r2,3

125A2
12/A3

12 . Similar rela-
tions can be obtained for the soliton 2 also.

C. Arbitrary N case

Proceeding in a similar fashion one can construct for
soliton S1 a generalized linear fractional transformation f
theN-component case also which relates ther vectors before
and after collision,

r i ,N
115

Ai
11

AN
11

5

(
j 51

N

Ci j r j ,N
12

(
j 51

N

CN jr j ,N
12

, ~37a!

with the condition

rNN
1251. ~37b!

Here r i ,N
125Ai

12/AN
12 . Similar expression can be obtaine

for soliton 2 also.
The above generalization paves the way not only for w

ing down the bilinear transformation but also for identifyin
multistate logic. For example, in theN53 case, the follow-
ing states are possible:r5@r1 ,r2# [@(0,0),(0,1),(1,0),
(1,1)#, where the logical ‘‘0’’ state can stand for the comple
valuedr state corresponding to a suppression of the am
tude in that mode, while the logical ‘‘1’’ state may corre
04661
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spond to enhancement~including no change!, which can be
used to perform logical operations, whereas in theN52 case
we have only the two state logic,r5@0,1#. This shows that
for N.2, we will get multistate logic and we believe tha
such states can be of a distinct advantage in computa
This kind of study is in progress.

VII. HIGHER-ORDER SOLITON SOLUTIONS
AND THEIR INTERACTIONS

Now it is of interest to study the nature of multisolito
collisions making use of the explicit forms of multisolito
solutions given in Secs. III and IV. Due to the complicat
nature of the above bright soliton expressions, it becom
nontrivial to identify the nature of the collision process.
his paper @13#, Manakov pointed out that in general a
N-soliton collision does not reduce to a pair collision due
the nontrivial dependence of the amplitude of a particu
soliton before interaction on the other soliton parameters
this section by a careful asymptotic analysis of the thr
soliton solution~10! of the 2-CNLS equations, which can b
deduced to theN-CNLS case without any difficulty, we ex
plicitly demonstrate that the collision process indeed can
considered to occur pairwise, thereby putting Manako
statement into proper perspective and making it clearer. O
can carry out a similar analysis for the four-soliton soluti
given in the Appendix, generalizing which one can show t
in the higher-order solitons of CNLS equations also the c
lision is pairwise. Such an analysis also reveals the m
possibilities for energy exchange among the modes of
solitons, including the exciting possibility of state restorati
in higher-order soliton solutions, a precursor to the constr
tion of logic gates.

A. Asymptotic analysis of three-soliton solution
of 2-CNLS equations

Considering the explicit three-soliton expression~10!,
without loss of generality, we assume that the quantitiesk1R ,
k2R , and k3R are positive andk1I.k2I.k3I ~for the equal
sign casesk1I5k2I5k3I , see Sec. IX below!. One can carry
out a similar analysis for other possibilities ofkiI ’s, i
51,2,3, also as discussed below. Then for the above co
tion the variablesh iR’s, i 51,2,3, for the three-solitons
(S1 ,S2, andS3) take the following values asymptotically:

~ i! h1R'0,h2R→6`, h3R→6`, as z→6`,

~ ii ! h2R'0, h1R→7`, h3R→6`,

as z→6`,

~ iii ! h3R'0,h1R→7`, h2R→7`, as z→6`.
7-12
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Defining the various quantitiesRi ’s, i 51,2, . . . ,7, d l j ’s, l
51,2, . . . ,9,j 51,2,tm j’s, and tm0’s, m51,2,3, as in Eq.
~10! we have the following limiting forms of the three
soliton solution, Eq.~10!.

(i) Before collision (limit z→2`).
(a) Soliton 1(h1R'0,h2R→2`,h3R→2`):

S q1

q2
D'S A1

12

A2
12D k1RsechS h1R1

R1

2 Deih1I, ~38a!

S A1
12

A2
12D 5S a1

(1)

a1
(2)D ec2R1/2

~k11k1* !
. ~38b!

(b) Soliton 2(h2R'0,h1R→`,h3R→2`):

S q1

q2
D'S A1

22

A2
22D k2RsechS h2R1

R42R1

2 Deih2I, ~39a!

S A1
22

A2
22D 5S ed11

ed12
D e2(R11R4)/2

~k21k2* !
. ~39b!

(c) Soliton 3(h3R'0,h1R→`,h2R→`):

S q1

q2
D'S A1

32

A2
32D k3RsechS h3R1

R72R4

2 Deih3I, ~40a!

S A1
32

A2
32D 5S et11

et12
D e2(R41R7)/2

~k31k3* !
. ~40b!

(ii) After collision (limit z→1`).
(a) Soliton 1(h1R'0,h2R→`,h3R→`):

S q1

q2
D'S A1

11

A2
11D k1RsechS h1R1

R72R6

2 Deih1I, ~41a!

S A1
11

A2
11D 5S et31

et32
D e2(R61R7)/2

~k11k1* !
. ~41b!

(b) Soliton 2(h2R'0,h1R→2`,h3R→`):

S q1

q2
D'S A1

21

A2
21D k2RsechS h2R1

R62R3

2 Deih2I, ~42a!

S A1
21

A2
21D 5S ed61

ed62
D e2(R31R6)/2

~k21k2* !
. ~42b!

(c) Soliton 3(h3R'0,h1R→2`,h2R→2`):

S q1
31

q2
31D'S A1

31

A2
31D k3RsechS h3R1

R3

2 Deih3I, ~43a!

S A1
31

A2
31D 5S a3

(1)

a3
(2)D e2R3/2

~k31k3* !
. ~43b!
04661
B. Transition elements

The above analysis clearly shows that during the thr
soliton interaction process, there is a redistribution of inte
sities among these solitons in the two modes along with a
plitude dependent phase shifts as in the case of the t
soliton interaction. The amplitude changes can be expres
in terms of a transition matrixTj

l as

Aj
l 15Tj

l Aj
l 2 , j 51,2, l 51,2,3. ~44!

Explicit forms of the entries of the transition matrix quan
fying the amount of intensity redistribution for the thre
solitons are as follows.

Soliton 1:

S T1
1

T2
1D 5S et31

a1
(1)

et32

a1
(2)

D e2(R61R72R1)/2. ~45a!

Soliton 2:

S T1
2

T2
2D 5S ed612d11

ed622d12
D e2(R31R62R12R4)/2.

~45b!

Soliton 3:

S T1
3

T2
3D 5S a3

(1)e2t11

a3
(2)e2t12

D e2(R32R42R7)/2.

~45c!

The various quantities found in the above equations are
fined in Eq.~10!.

C. Phase shifts

Now let us look into the phase shifts suffered by each
the solitons during collision. These can be written as

S1 :F15
R72R62R1

2
, ~46a!

S2 :F25
R62R32R41R1

2
, ~46b!

S3 :F35
R32R71R4

2
. ~46c!

Here the quantitiesR1 ,R2 , . . . ,R7 are as given in Eq.~10!.
Note that each of the phase shiftsF1,F2, andF3 contains a
part which depends purely onki ’s, i 51,2,3, and another par
which depends on the amplitude~polarization! parameters
a i

( j )’s along withki ’s.
7-13
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D. Relative separation distances

As a consequence of the above amplitude depen
phase shifts, the relative separation distances between
solitonst i j

6 @position ofSj ~at z→6`) — position ofSi ~at
z→6`), iÞ j , i , j , i , j 51,2,3] also varies as a function o
amplitude parameters. The change in the relative separa
distances (Dt i j 5t i j

22t i j
1) can be obtained from the

asymptotic expressions~38!–~43!. They are found to be

Dt125
F1k2R2F2k1R

k1Rk2R
, ~47a!

Dt135
F1k3R2F3k1R

k1Rk3R
, ~47b!

Dt235
F2k3R2F3k2R

k2Rk3R
, ~47c!

whereF j ’s, j 51,2,3, are defined in Eq.~46! andkjR’s rep-
resent the real parts ofkj ’s.

E. Nature of collision

Now it is of interest to look into the nature of the coll
sions in the three-soliton interaction process, that is, whe
it is pairwise or not. This can be answered from t
asymptotic expressions presented in Eqs.~38!–~46!. For ex-
ample, let us consider soliton 1 (S1). The net change in the
amplitudes of the two modes of solitonS1 is given by the
transition amplitudesTi

1 , i 51,2, that is,

S A1
11

A2
11D 5S T1

1 0

0 T2
1D S A1

12

A2
12D , ~48!

whereT1
1 andT2

1 are defined in Eq.~45a!. The above form of
transition relations is obtained by expanding Eq.~44!.

Let us presume first that the collision process is a pairw
one and then verify this assertion. According to our assum
tion k1I .k2I.k3I , and so the first collision occurs betwee
S1 and S2 as shown schematically in Fig. 4. Then durin
collision with S2, the two modes ofS1 change their ampli-
tudes~intensities! by T̃1

1 and T̃2
1, respectively. Their forms

FIG. 4. A schematic three-soliton collision process~for the
choicek1R ,k2R ,k3R.0,k1I.k2I.k3I). The effects of phase shift
are not included in the figure.
04661
nt
the

on

er

e
p-

follow from the basic two-soliton interaction process d
cussed in Sec. V, Eq.~25b!. This can be expressed in math
ematical form as

S Ã1
11

Ã2
11D 5S T̃1

1 0

0 T̃2
1D S A1

12

A2
12D , ~49a!

where

S T̃1
1

T̃2
1D 5S ed31

a1
(1)

ed32

a1
(2)

D e2(R41R22R1)/2. ~49b!

Again the above expressions can be obtained straigh
wardly from Eq.~25b! with N52.

Now the resulting soliton (S̃1), after the first collision, is
allowed to collide with the third soliton (S3) ~see Fig. 4!.
From asymptotic expressions~38!–~45! and using above
Eqs.~49!, it can be shown that

S A1
11

A2
11D 5S T̂1

1 0

0 T̂2
1D S Ã1

11

Ã2
11D , ~50a!

where

S T̂1
1

T̂2
1D 5S et312d31

et322d32
D e2(R61R72R42R2)/2. ~50b!

However, using Eq.~49! in Eq. ~50a!, we can write

S A1
11

A2
11D 5S T̂1

1 0

0 T̂2
1D S T̃1

1 0

0 T̃2
1D S A1

12

A2
12D ~51a!

5S T̂1
1T̃1

1 0

0 T̂2
1T̃2

1D S A1
12

A2
12D . ~51b!

If this is the collision scenario, then the right hand sides
Eqs.~48! and ~51b! should be the same, that is,

T1
15T̂1

1T̃1
1 , ~51c!

T2
15T̂2

1T̃2
1 . ~51d!

This can be easily verified to be true directly from expre
sions~45! and ~49!–~50!. In a similar fashion, for the othe
two-solitons also the transition matrix can be shown a
product of two matrices corresponding to two collisions,
spectively.

Now let us look at the phase shifts. It is also necessar
identify whether the total phase shift acquired by each s
ton during the three-soliton collision process is a result
two consecutive pairwise collisions or not. In this regard,
again focus our attention on soliton 1 (S1) first. Let us as-
sume the collision to be pairwise. Then one can write
7-14
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phase shift suffered byS1 during the collision based on th
analysis of the two-soliton collision process. Following E
~27! ~with appropriately changed notations!, we can write the
expression for the phase shift suffered byS1 on its collision
with S2 as

d̃5
R42R22R1

2
. ~52!

Now the outcoming form ofS1 ~which is Ŝ1) is allowed to
interact with S3 ~see Fig. 4!. The phase shift during this
second collision can again be found from the asympto
expressions~38!–~43! as

d̂5
R72R62R41R2

2
. ~53!

On the other hand, from asymptotic expressions~46!, the
total phase shift suffered byS1 in a three-soliton collision
process can be written as

d5
R72R62R1

2
~54!

5 d̃1 d̂. ~55!

Thus the total phase shift suffered by the soliton 1 is the s
of the phase shifts suffered by it during pairwise collisio
with soliton 2 and soliton 3, respectively. Similar conclusio
can also be drawn on the phase shifts suffered by the o
two-solitons as well. Thus the above analysis on the chan

FIG. 5. Intensity profilesuq1u2 anduq2u2 of the two modes of the
three-soliton solution of the 2-CNLS equations, representing ela
collision, with the parameters chosen ask1511 i , k251.5
20.5i , k3522 i , a1

(1)5a2
(1)5a3

(1)5a1
(2)5a2

(2)5a3
(2)51.
04661
.

c

m

er
es

in the amplitudes and phase shifts during the three-sol
collision process establishes the fact that the collisions
deed occur pairwise.

It may be noted that the above results also imply that
three-soliton collision process is associative and indepen
of the sequence in which collisions occur, that is whether
collision occurs in the orderS1→S2→S3 or S1→S3→S2.
This property has been anticipated in the numerical study
Lewis et al. @26#, which is now rigorously proved here.

F. Intensity redistributions and shape restoration

The asymptotic analysis not only explains the nature
the collision process, but also characterizes the collision p
cess. It is clear from the above analysis of the three-sol
solution that in general there is an intensity redistributi
among the three solitons due to pairwise interaction in all
two modes along with amplitude dependent phase shifts a
the two-soliton interaction, subject to conservation laws.
have analyzed the various three-soliton collision scena
below.

1. Elastic collision

The standard elastic collision property of solitons resu
for the special casea1

(1) :a2
(1) :a3

(1)5a1
(2) :a2

(2) :a3
(2) . The

magnitude of the transition elementsuTj
l u, j 51,2, and l

51,2,3, becomes one for this choice of parameters and t
occurs no intensity redistribution among the modes exc
for phase shifts. This is shown in Fig. 5 for the paramet

ic FIG. 6. Intensity profilesuq1u2 anduq2u2 of the two modes of the
three-soliton solution of the 2-CNLS equations, representing
shape-changing~intensity redistribution! collision process for the
choice of the parameters,k1511 i , k251.520.5i , k3522 i , a1

(1)

5(39280i )/89, a2
(1)5(39180i )/89, a3

(1)50.310.2i , a1
(2)50.39,

a2
(2)5a3

(2)51.
7-15
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choicea l
( j )51, l 51,2,3, j 51,2, k1511 i , k251.520.5i ,

andk352.02 i .

2. Shape-changing (intensity redistribution) collision

For general values of the parametersa l
( j )’s, there occurs

shape-changing collisions among the three solitons, howe
leaving the total intensity of each of the solitons conserv
that is, uA1

l 6u21uA2
l 6u251/m, l 51,2,3. This intensity redis-

tribution is accompanied by amplitude dependent ph
shifts and changes in the relative separation distances o
solitons as discussed above. They can be calculated
expressions~38!–~47!. One such shape-changing interacti
is depicted in Fig. 6 for illustrative purposes. The pa
meters chosen arek1511 i , k251.520.5i , k3522 i , a1

(1)

5(39280i )/89, a2
(1)5(39180i )/89, a3

(1)50.310.2i , a1
(2)

50.39,a2
(2)5a3

(2)51. In this figure we have shown the sc
nario in which the three solitons in the two modes ha
different amplitudes~intensities! after interaction when com
pared to the case before interaction. HereS1 is allowed to
interact withS2 first and then withS3. Due to this collision,
in theq1 mode the intensity ofS1 is suppressed while that o
S2 is enhanced along with suppression of intensity inS3. On
the other hand, the reverse scenario occurs in theq2 mode
for the three solitonsS1 , S2, andS3.
ry

s

n
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3. Shape restoration of any one of the three-solitons

The asymptotic analysis also shows that there is a po
bility for any one of the three-solitons to restore its sha
~amplitude or intensity! during collision. In this connection
let us look into how the shape restoring property ofS1 occurs
during its collision with the other two-solitons~say S2 and
S3). We have already shown that the collision process i
pairwise one. Then the three-soliton collision process
equivalent to two pairwise collisions. Let the first collisio
be parametrized by the paramete
a1

(1) , a1
(2) , a2

(1) , a2
(2) , k1, andk2. Now we exploit the ar-

bitrariness involved in choosing the parametersa3
(1) anda3

(2)

in the second collision process in order to make the net tr
sition amplitude ofS1 be unity, leaving the other two trans
tion amplitudes ofS2 andS3 to vary, that is,

Tj
151, Tj

2Þ1, Tj
3Þ1, j 51,2. ~56!

This condition will make the solitonS1 only be unaffected at
the end of the three-soliton collision process. Then the eq
tions corresponding to this condition are
A1R1A2Rx2A2I y1A3R~x22y2!22A3Ixy1A4Rx1A4I y1A5R~x21y2!1A6R~x31xy2!2A6I~x2y1y3!

1A7R~x22y2!12A7Ixy1A8R~x31xy2!1A8I~x2y1y3!1A9R~x21y2!250, ~57a!

A1I1A2Ry1A2Ix12A3Rxy1A3I~x22y2!1A4Ix2A4Ry1A5I~x21y2!1A6I~x31xy2!1A6R~x2y1y3!

22A7Rxy1A7I~x22y2!2A8R~x2y1y3!1A8I~x31xy2!1A9I~x21y2!250, ~57b!

B1R1B2Rx2B2I y1B3R~x22y2!22B3Ixy1B4Rx1B4I y1B5R~x21y2!1B6R~x31xy2!2B6I~x2y1y3!

1B7R~x22y2!12B7Ixy1B8R~x31xy2!1B8I~x2y1y3!1B9R~x21y2!250, ~57c!

B1I1B2Ry1B2Ix12B3Rxy1B3I~x22y2!1B4Ix2B4Ry1B5I~x21y2!1B6I~x31xy2!1B6R~x2y1y3!

22B7Rxy1B7I~x22y2!2B8R~x2y1y3!1B8I~x31xy2!1B9I~x21y2!250, ~57d!
ex-
l

ith

tion
he
e

where we have taken (a3
(1)/a3

(2))5x1 iy , the subscripts
$ lR% and$ l I %, l 51,2, . . . ,9represent the real and imagina
parts, respectively. The expressions for theAi ’s andBi ’s are
lengthy but can be obtained straightforwardly@by making
use of Eq.~56! and expressions~45a!#, and so we do not
present them here. Solving these overdetermined system
equations forx andy will give the suitable ratio (a3

(1)/a3
(2)),

for which the shape restoring property of one of the solito
S1 only arises in a three-soliton collision process.
of

s

Though we have not investigated the problem of the
istence of solutions of Eqs.~57!, one can make a numerica
search and identify suitable values ofx andy to demonstrate
the shape restoration property. For example, in Fig. 7 w
the parameters fixed atk1511 i , k251.520.5i , k3522 i ,
a1

(1)5a1
(2)5a2

(2)51, a2
(1)5(39180i )/89, a3

(1)51.19,a3
(2)

5(39180i )/89, we have demonstrated the shape restora
property. We find that while the amplitudes of the two of t
solitons (S2 andS3) change after interaction, the amplitud
7-16
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of the solitonS1 remains unchanged during the interacti
process.

In the above analysis we have required the complete
toration property of solitonS1. However, it is also possible
to require that the intensity alone be restored. In this ca
condition ~56! can be modified as

uTj
1u51, uTj

2uÞ1, uTj
3uÞ1, j 51,2, ~58!

leading to a set of two complicated equations forx and y
~which are too lengthy to be presented here!. Solving them
we can findx andy. Note that the quantitiesx andy corre-
spond to the real and imaginary parts of the ratio of
parametersa3

(1) anda3
(2) , so that for every choice ofx andy

there exists a large set ofa3
(1) and a3

(2) values for which
shape restoration property holds good.

One might also go a step further and demand that
phase shiftF1 or the changes in the relative separation d
tancesDt12 andDt13 vanish. These will give additional con
straints on the choice of parametersa3

(1) and a3
(2) . These

considerations require separate study and we have not
sued them here. It is obvious that such shape-changing
shape restoring collision properties of the optical solitons
integrable CNLS equations, exhibiting a redistribution of
tensity among the three-solitons in the two modes, will ha
considerable technological applications both in optical co
munications including wavelength division multiplexing, o
tical switching devices, etc., and optical computation,
example, in constructing logic gates@18,19#.

FIG. 7. Shape restoring property of soliton 1 (S1) during its
collision with the other two-solitons, soliton 2 (S2) and soliton 3
(S3), for the choice of parametersk1511 i , k251.520.5i , k3

522 i , a1
(1)5a1

(2)5a2
(2)51, a2

(1)5(39180i )/89, a3
(1)

51.19,a3
(2)5(39180i )/89.
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G. Three-soliton solution of multicomponent CNLS equations
and shape-changing collisions

The above analysis on the three-soliton collision
2-CNLS equations can be extended straightforwardly
three-soliton solution~14! of N-CNLS equations, with arbi-
trary N, includingN53. One can identify that shape chan
ing collision occurs here also but with a lot more possibiliti
for redistribution of intensities in contrast to the 2-CNL
case. The quantities characterizing the collision process
also are the intensity redistribution, amplitude depend
phase shifts, and relative separation distances between
solitons, as explained in the 2-CNLS case.

We also note that as the number of components incre
from two to some arbitraryN (N.2), the different possibili-
ties for redistribution of intensity among them also increa
in a manifold way. The corresponding transition matrix, me
suring this redistribution, is found to be similar to Eqs.~45!
with the redefinition ofk i l ’s as given in Eq.~14b! along with
the indexj running from 1 toN instead of 1 to 2. The othe
factors, amplitude dependent phase shifts and change in
tive separation distances, also bear the same form give
Eqs.~46! and ~47!, respectively, with this redefinition.

As to the shape restoration property one has to again s
the equations

Tj
151, Tj

2Þ0, Tj
3Þ0, j 51,2,3, . . . ,N. ~59!

Alternatively for intensity restoration the conditions are

uTj
1u51, uTj

2uÞ0, uTj
3uÞ0, j 51,2,3, . . . ,N. ~60!

Extending the above analysis, it is clear that, carrying out
asymptotic analysis of four-soliton solution given in the A
pendix, it is possible to restore the shape of two of the s
tons at the maximum, which can be further generalized to
arbitraryN soliton case, in which it is possible to restore t
shape ofN22 of the solitons. We have checked in this ca
also from the asymptotic analysis that the soliton interact
is pairwise, and we conjecture that this should be true for
arbitraryN-soliton case as well.

VIII. MULTISOLITON SOLUTIONS AS LOGIC GATES

The state vectors and LFTs introduced in Sec. VI and
shape-changing pairwise collision nature of bright solito
mentioned in Sec. VII can be profitably used to look at t
multisoliton solutions of CNLS equations as various log
gates. We believe that such an approach provides an alte
tive point of view of shape-changing soliton collisions
construct logic gates as discussed in Ref.@19#. The present
point of view may have its own advantage as system ini
conditions are chosen suitably to generate specific form
multisolitons to represent logic gates may be much ea
from a practical point of view, including replication, com
pared to constructing them through predetermined indep
dent soliton collisions. In the following we will demonstra
this idea for the case of the 2-CNLS as an example.
7-17
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A. Three-soliton solution and state restoration property

The shape restoration of a particular soliton in arbitra
state associated with the three-soliton solution has been
cussed in Sec. VII F. Particularly, this can be well appre
ated with respect to binary logic states. For example, if
consider the solitonS1 is in ‘‘1’’ state with the state value
r1,2

1251, it implies

a1
(1)

a1
(2)

51. ~61!

To obtain this we choosea1
(1)5a1

(2)51. For simplicity we
require S2 to be in the ‘‘0’’ state before interaction. From
asymptotic expressions~39!, this can be achieved by choo
ing the ratioa2

(1)/a2
(2) as

a2
(1)

a2
(2)

5
k11k1*

2k21k1* 2k1

. ~62!

Now in order to restore the state ofS1 after two collisions,
we have to allow the outcome ofS1 resulting after the first
collision, which may be called solitonS18 , to interact with
soliton S3 having a state inverse to the above 0 state. T
state forS3 can be identified from its asymptotic form befo
interaction given in Eq.~40!. The resulting condition can b
shown to be

a3
(1)

a3
(2)

5
n

d
, ~63a!

n52~a2
(1)1a2

(2)!a2
(2)* A1k22~k12k1* 22k3!B

12a2
(2)a2

(2)* C2a2
(2)~a2

(1)* 1a2
(2)* !D1ua2

(1)1a2
(2)u2E,

~63b!

d5~a2
(1)1a2

(2)!a2
(1)* A2k22~k11k1* !B

22a2
(2)a2

(1)* C2~a2
(1)* 1a2

(2)* !a2
(2)D, ~63c!

where

A5~k11k1* !~k31k1* !~k11k2* !, ~63d!

B5~k21k1* !~k31k2* !~k11k2* !, ~63e!

C5~k21k1* !~k31k1* !~k11k2* !, ~63f!

D5~k21k1* !~k31k2* !~k11k1* !, ~63g!

E5~k31k2* !~k11k1* !~k31k1* !. ~63h!
04661
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In the above equation choosing the parameters satisf
conditions~61! and ~62! one can fix (a3

(1)/a3
(2)) suitably in

order to restore the state of solitonS1. Thus the three-soliton
solution given by Eq.~10! having the specific choice of pa
rameters specified by Eqs.~61!–~63! corresponds to the stat
restoration of solitonS1.

B. Four-soliton solution and COPY gate

Extending the above procedure, we can now consider
four-soliton solution given in the Appendix, and identify it a
~i! a COPY gate or~ii ! a ONE gate or~iii ! a NOT gate studied
in Ref. @19# for suitable choices of the arbitrary paramete
As an example, let us consider copying 1 state ofS1 to the
output state of solitonS4. This requires the following steps

~1! We consider the four-soliton collision process
which the solitonS1 collides with the solitonS2 first and
then with the solitonS3 and finally with the solitonS4. This
sequence of collision follows from the conditionk1I.k2I
.k3I.k4I .

~2! Consider for convenienceS1 to be in the 0 state, the
so-called actuator state@19#. This requiresa1

(1)/a1
(2)50,

which can be obtained by choosinga1
(1)50 anda1

(2) as ar-
bitrary.

~3! Assign 1 state to solitonS2 before interaction, for
which we need

a2
(1)

a2
(2)

5
k22k1

k21k1*
. ~64!

~4! After its collision with S2 as a result of shape
changing collision the outcoming state ofS1 ~sayS18) will be
altered.

~5! Now let us allow the third soliton in the four-solito
solution to interact withS18 which changes the stateS18 to S19 .

~6! Finally, S4 is allowed to interact withS19 . From the
asymptotic analysis, we identify the state of solitonS4 after
interaction as

r1,2
415

a4
(1)

a4
(2)

. ~65!

We impose the condition on this state that this should be
the state ofS2 before interaction. Thus the parametersa4

(1)

and a4
(2) of soliton S4 get fixed depending upon the inpu

state ofS2.
~7! The asymptotic analysis of the four-soliton solutio

given in the Appendix results in the following condition fo
S4 to be in one state after interaction:

T1
4A1

42

T2
4A2

42
51, ~66!
7-18
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where T1
4 and T2

4 are the transition elements ofS4 in the
modesq1 andq2, respectively. HereA1

42k4R andA2
42k4R are

the amplitudes of solitonS4 before interaction in the two
modes, respectively.

~8! If we flip the input state ofS2 from 1 to 0 state by
suitably choosing ther1,2

22’s parameters then the condition o
soliton S4’s output will become

T1
4A1

42

T2
4A2

42
50. ~67!

~9! In the above two Eqs.~66! and ~67! only free param-
eters area3

(1) anda3
(2) . In principle, we can solve these tw

complex equations to obtain the free complex parame
a3

(1) anda3
(2) . Then for the given choice of parameters t

state of the incoming solitonS2 can be copied on to the
outgoing solitonS4.

Thus a four-soliton collision process with the abo
premise is equivalent to aCOPYgate. A similar procedure ca
be extended to other gates mentioned above as well. One
extend this idea further to identify aFANOUT gate from a
five-soliton solution. It appears that one can pursue the i
ultimately to identify theNAND gate itself as a multisoliton
solution following the construction of Steiglitz in Ref.@19#.
Fuller details will be reported elsewhere.

IX. BRIGHT SOLITON SOLUTIONS AND PARTIALLY
COHERENT SOLITONS

As mentioned in the Introduction, the recent observatio
by several authors@11,12,25# have shown thatN-CNLS
equations~1! can supportN-PCSs solutions. In general, the
PCSs are said to be special cases of the so-called multi
ton complexes@2# which are nonlinear superposition of fun
damental bright solitons. It has also been demonstrated
these PCSs are formed only if the number of component
Eq. ~1! is equal to the number of solitons. Then it is qu
natural to look for the 2-PCS, 3-PCS, 4-PCS, etc., as spe
cases of the two-soliton solution of the 2-CNLS, thre
soliton solution of the 3-CNLS, four-soliton solution of th
4-CNLS equations, etc., respectively, deduced in Secs
and IV. In the following, we indeed show that the PC
reported in Refs.@11,12,25# result as special cases, that
specific choices of some of the arbitrary complex paramet
from the bright soliton solutions of CNLS equations d
cussed in Secs. III and IV, thereby showing the origin of
various interesting properties of the PCS solutions.

A. 2-PCS : A special case of the bright two-soliton solution
of 2-CNLS equations

Let us consider the stationary limit of the two-soliton s
lution of the 2-CNLS equations~Manakov system! given by
Eq. ~8!, that is,knI50, for the special choice of the param
eters, a1

(1)5eh10, a2
(2)52eh20, a1

(2)52a2
(1)50, where

h j 0’s, j 51,2, are now restricted as real constants. Then
~8! becomes
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q15S eh11
m~k1R2k2R!eh11h21h2*

4k2R
2 ~k1R1k2R!

D Y D̃, ~68a!

q25S 2eh21
m~k1R2k2R!eh11h1* 1h2

4k1R
2 ~k1R1k2R!

D Y D̃,

~68b!

where

D̃511mFeh11h1*

4k1R
2

1
eh21h2*

4k2R
2 G

1
m2~k1R2k2R!2eh11h1* 1h21h2*

16k1R
2 k2R

2 ~k1R1k2R!2
~68c!

and

h j5kjR~ t1 ik jRz!1h j 0 , j 51,2. ~68d!

This stationary solution can be easily identified as the 2-P
expression~13!–~15! given in Ref.@12# with the identifica-
tion of x̄ j ’s as t̄ j ’s, j 51,2,

t 1̄5t2t15t1
h10

k1R
1

1

2k1R
lnF m~k1R2k2R!

4k1R
2 ~k1R1k2R!

G , ~69a!

t 2̄5t2t25t1
h20

k2R
1

1

2k2R
lnF m~k1R2k2R!

4k2R
2 ~k1R1k2R!

G . ~69b!

As the 2-PCS is a special case of the bright two-soliton
lution of 2-CNLS equations, it is also characterized bya i

( j )’s
~through h j 0’s! and kiR’s resulting in amplitude dependen
phases, and hence amplitude dependent relative separ
distances. To be specific, in the PCSs the change in the
tive separation distance plays a predominant role in de
mining their shape as pointed out in Refs.@11,12#. These
PCSs can be classified into two types as symmetric
asymmetric depending on the relative separation distan
Defining the relative separation distancet125t22t1, one can
check that, fort1250, the PCS bears a symmetric form wi
respect to its propagation direction and is known as symm
ric PCS@11#. It takes an asymmetric form fort12Þ0 and is
known as asymmetric PCS@11#. From Eqs.~69!, the relative
separation distances for the stationary 2-PCS can be obta
as

t125t22t15
h10

k1R
2

h20

k2R
1

1

2k1R
lnF m~k1R2k2R!

4k1R
2 ~k1R1k2R!

G
2

1

2k2R
lnF m~k1R2k2R!

4k2R
2 ~k1R1k2R!

G . ~70!
7-19
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Typical forms of symmetric and asymmetric stationa
2-PCS are shown in Fig. 8, which similar to those in R
@12#.

B. 3-PCS: A special case of the bright three-soliton solution
of 3-CNLS equations

Since it has been observed that the PCS solutions e
when the number of components is equal to the numbe
solitons propagating in the system, we consider next
three-soliton solution of the 3-CNLS equations in order
show that the 3-PCS is a special case of the three-so
04661
.
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solution. Thus considering the stationary limitknI50,
n51,2,3, of the three-soliton solution of 3-CNLS equatio
given by Eq. ~14! with N53, and making the following
parametric choice:

a1
(1)5eh10, a2

(2)52eh20, a3
(3)5eh30,

a1
(2)5a1

(3)5a2
(1)5a2

(3)5a3
(1)5a3

(2)50, ~71!

whereh j 0’s, j 51,2,3, are restricted to real parameters,
obtain
q15Feh11
m~k1R2k2R!eh11h21h2*

4k2R
2 ~k1R1k2R!

1
m~k1R2k3R!eh11h31h3*

4k3R
2 ~k1R1k3R!

1
m2~k2R2k1R!~k3R2k1R!~k3R2k2R!2eh31h3* 1h21h2* 1h1

16k2R
2 k3R

2 ~k2R1k1R!~k3R1k1R!~k3R1k2R!2 G Y D 1̃, ~72a!

q25F2eh21
m~k1R2k2R!eh11h1* 1h2

4k1R
2 ~k1R1k2R!

1
m~k3R2k2R!eh31h3* 1h2

4k3R
2 ~k3R1k2R!

1
m2~k2R2k1R!~k3R2k2R!~k3R2k1R!2eh31h3* 1h11h1* 1h2

16k1R
2 k3R

2 ~k2R1k1R!~k3R1k2R!~k3R1k1R!2 G Y D 1̃, ~72b!

q35Feh31
m~k3R2k1R!eh11h1* 1h3

4k1R
2 ~k1R1k3R!

1
m~k3R2k2R!eh21h2* 1h3

4k2R
2 ~k3R1k2R!

1
m2~k3R2k1R!~k3R2k2R!~k2R2k1R!2eh21h2* 1h11h1* 1h3

16k1R
2 k2R

2 ~k3R1k1R!~k3R1k2R!~k2R1k1R!2 G Y D 1̃. ~72c!

Here,

D 1̃511mFeh11h1*

4k1R
2

1
eh21h2*

4k2R
2

1
eh31h3*

4k3R
2 G1

m2~k1R2k2R!2eh11h1* 1h21h2*

16k1R
2 k2R

2 ~k1R1k2R!2
1

m2~k1R2k3R!2eh11h1* 1h31h3*

16k1R
2 k3R

2 ~k1R1k3R!2

1
m2~k3R2k2R!2eh21h2* 1h31h3*

16k2R
2 k3R

2 ~k2R1k3R!2
1Fm3~k2R2k1R!2~k3R2k1R!2~k3R2k2R!2eh11h1* 1h21h2* 1h31h3*

64k1R
2 k2R

2 k3R
2 ~k1R1k2R!2~k1R1k3R!2~k2R1k3R!2 G . ~72d!
t 1̄5t2t15t1
h10

k1R
1

1

2k1R
lnF m~k2R2k1R!~k3R2k1R!

4k1R
2 ~k1R1k2R!~k1R1k3R!

G ,

~73a!
The above solution can be easily rewritten as Eqs.~16!–~18!
for the 3-PCS case given in Ref.@12#. As in the case of
2-PCS, here also we identifyx̄ j ’s given in Ref.@12# as t̄ j ’s,
j 51,2,3, which are defined below as
7-20
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t 2̄5t2t25t1
h20

k2R
1

1

2k2R
lnF m~k2R2k1R!~k3R2k2R!

4k2R
2 ~k1R1k2R!~k2R1k3R!

G ,

~73b!

t 3̄5t2t35t1
h30

k3R
1

1

2k3R
lnF m~k3R2k1R!~k3R2k2R!

4k3R
2 ~k1R1k3R!~k2R1k3R!

G .

~73c!

These 3-PCSs can also be classified as symmetric and a
metric as in the case of 2-PCSs. The stationary 3-PC
symmetric whent125t1350 and asymmetric otherwise. I
Fig. 9 we have shown the symmetric and asymmetric 3-P
solutions.

C. 4-PCS: A special case of the four-soliton solution
of 4-CNLS equations

In a similar fashion as in the above two cases, the fo
soliton solution of the 4-CNLS equations given in the A
pendix with N54 can also be shown to reduce to 4-PC
given by Eqs.~19!–~23! in Ref. @12# by choosingknI50,
a1

(1)5eh10, a2
(2)52eh20, a3

(3)5eh30, a4
(4)52eh40, a i

( j )

50,i , j 51,2,3,4,iÞ j . Since it is straightforward but length
to write down the form, we desist from presenting the so
tion here. Here thet j ’s, j 51,2,3,4, are defined as

t152
h10

k1R

2
1

2k1R
lnF m~k2R2k1R!~k3R2k1R!~k4R2k1R!

4k1R
2 ~k2R1k1R!~k3R1k1R!~k4R1k1R!

G ,

~74a!

FIG. 8. Typical 2-PCS forms for the Manakov system forz
50, see Eqs.~68!, with k151.0 andk252.0: ~a! symmetric case
(t1250), ~b! asymmetric case (t1251).
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t252
h20

k2R

2
1

2k2R
lnF m~k2R2k1R!~k3R2k2R!~k4R2k2R!

4k2R
2 ~k2R1k1R!~k3R1k2R!~k4R1k2R!

G ,

~74b!

t352
h30

k3R

2
1

2k3R
lnF m~k3R2k1R!~k3R2k2R!~k4R2k3R!

4k3R
2 ~k3R1k1R!~k3R1k2R!~k4R1k3R!

G ,

~74c!

t452
h40

k4R

2
1

2k4R
lnF m~k4R2k1R!~k4R2k2R!~k4R2k3R!

4k4R
2 ~k4R1k1R!~k4R1k2R!~k4R1k3R!

G .

~74d!

FIG. 9. Typical 3-PCS forms for the integrable 3-CNLS syste
for z50 with k151.0, k250.5, andk350.2, see Eqs.~72!. ~a!
Symmetric case (t125t1350), ~b! asymmetric case (t1251, t13

52).
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Here also the symmetric PCS results fort i j 50, j . i , i , j
51,2,3,4, and asymmetric PCS fort i j Þ0, j . i .

Extending this idea to arbitraryN, it is clear that the
N-PCS is a special case of theN-soliton solution ofN-CNLS
equations~1!. It has been noticed in Refs.@11,12# that these
PCSs are of variable shape. The reason for the variable s
can be traced naturally to the nontrivial dependence
phases on the complex parametersa i

( j )’s as shown above
Thus it is clear that any change in the amplitude will affe
the phase part of the solitons and vice versa. Since we h
explicitly shown thatN-PCSs are special cases of brig
N-soliton solutions ofN-CNLS equations, they possess va
able shape as a consequence of the shape dependence
a i

( j ) parameters.

D. Propagation of partially coherent solitons and their
collision properties

The intriguing collision properties of the partially cohe
ent solitons reported in Refs.@11,12# can be well understood
by writing down the expression for PCSs with nonvanish
knI’s, that is nonstationary special cases of multicompon
higher-order bright soliton solutions discussed in Secs.
and IV. For the nonstationary PCSs we can choose as a
cial case the complex parametersa i

( j )’s ( iÞ j ) to be func-
tions of knI’s such that they vanish asknI50. As we make
theseknIÞ0, thena i

( j )’s ( iÞ j ) also vary, thereby making
the collision scenario interesting. We can consider both
cases of equal and unequal velocities, which exhibit sim
behaviors.

As a first example, we consider the propagation of
2-PCS comprising two solitons with equal velocities (k1I
5k2I) in PR media. Its propagation can be studied by cho
ing ~for illustrative purposes! a1

(2)5k1I and a2
(1)5(0.25

11.02i )k2I as functions of velocities (kjI , j 51,2) such that
they vanish whenkjI 50, j 51,2. This is shown in Fig. 10 for
the parametersa1

(1)52.01 i , a2
(2)51, k151.01 i , and k2

52.01 i . For the unequal velocity case (k1IÞk2I), the PCS

FIG. 10. Intensity profiles showing the collision scenario of tw
1-PCSs, with equal velocities, at~a! z525 and~b! z55, given by
special choice of parameters~as given in text! in the two-soliton
solution of the Manakov system.
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collision is shown in Fig. 11 for the parametric choicea1
(1)

51.0, a1
(2)5k1I , a2

(1)52@(22180i )/89#k2I , a2
(2)522.0,

k151.01 i , andk252.02 i . This can also be viewed as th
collision of two 1-PCS which are spread among the t
components, which are traveling with equal but opposite
locities.

Now let us consider the collision of 2-PCS and 1-PCS
PR media. This is equivalent to the three-soliton collision
the 3-CNLS system with specific choice of parameters.
consider the case, in which the complex paramet
a1

(2) ,a1
(3) , a2

(1) , a2
(3) , a3

(1) , a3
(2) are nonvanishing and a

functions ofknI’s, n51,2,3. Then the resulting asymptot
forms of the 3-PCS propagation is shown in Fig. 12 for t
parametric choice a1

(1)51.0, a1
(2)5a1

(3)5k1I , a2
(1)5

20.5k2I , a2
(2)50.25, a2

(3)50.02k2I , a3
(1)52@(22

180i )/89#k3I , a3
(2)52k3I , a3

(3)522, k151.01 i , k251.5
2 i , andk352.02 i . In the above figures it can be verifie
that the total intensity of the individual solitons comprisin
the PCS is conserved.

The above analysis on PCS propagation clearly sho
that, there will be a variation in the shape of the PCS dur
its collision with other PCSs. The explanation for this res
follows from the shape-changing~intensity redistribution!
nature of fundamental bright soliton collision of the int
grable CNLS equations, explained in Sec. V. Further,
have also observed that the collision of two PCSs each c
prising m and n soliton complexes, respectively, such th
m1n5N studied in Refs.@11,12,25#, is equivalent to the
interaction ofN fundamental bright solitons~for suitable spe-
cific choice of parameters! represented by the special case
N-soliton solution of theN-CNLS system. It should also b
noted that in the collision process the total intensity of in
vidual solitons comprising theN-PCS is conserved. This i
due to the complete integrable nature of theN-CNLS equa-
tions ~1!.

FIG. 11. Intensity profiles showing the collision scenario of tw
1-PCSs, moving with equal but opposite velocities, at~a! z525
and ~b! z55, given by special choice of parameters~as given in
text! in the two-soliton solution of the Manakov system.
7-22
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E. Multisoliton complexes

In the above we have considered the CNLS equati
with number of components~say p) is equal to the numbe
of fundamental solitons~sayq). This is only a special cas
of the multisoliton complexes and has been much discus
recently. However, the results are scarce for the casepÞq,
except for the work of Sukhorukov and Akhmediev@25#,
where the incoherent soliton collision is demonstrated
merically. To elucidate the understanding we present a fo
of the three-soliton complex in which three solitons a
spread among the two components, by suitably choosing
parameters in the explicit expression, Eq.~10!. This has been
shown in Fig. 13 with the parameters chosen asa1

(1)5a1
(2)

51.0, a2
(1)50.5,a2

(2)50.25, a3
(1)5(22180i )/89, a3

(2)5
22, k151.01 i , and k251.51 i . From the figure and the
analysis of the soliton interaction, it is clear that the sha
of these complexes strongly depend on thea i

( j )’s along with
kj ’s which determine how the solitons are spread up am
the components. For the same case there exist various f
of multisoliton complexes depending on the spreading up

FIG. 12. Intensity profiles showing the collision scenario
2-PCS with 1-PCS at~a! z524 and ~b! z54 given by special
choice of parameters~as given in text! in the three-soliton solution
of Eq. ~1! with N53.
04661
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ed

-
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solitons in the two components. As a consequence of t
multisoliton complexes will possess a rich variety of stru
tures in comparison with the PCSs.

X. CONCLUSION

We conclude this paper by stating that the collision p
cesses of solitons in coupled nonlinear Schro¨dinger equa-
tions lead to very many exciting different properties and p
tential applications. The different properties include sha
changing intensity redistributions, amplitude depend
phase shifts, and relative separation distances, within
pairwise collision mechanism of solitons. Interestingly, it
identified that the intensity redistribution characterizing t
shape-changing collision process inN-CNLS equations can
be written as a generalized linear fraction transformati
This will give further impetus in constructing multistat
logic, multi-input logic gates, memory storage devices, a
so on, by using soliton interactions. The implication of the
properties requires further deep investigations. Further, vi
ing the recently much discussed objects, multisoliton co
plexes, partially coherent solitons as special cases of
bright soliton solution enhances the understanding of th
various properties. We expect the interaction study prese
here will shine more light on spatial soliton propagation
(111)D photorefractive planar waveguides.

FIG. 13. Intensity profiles of a multisoliton complex comprisin
three solitons spread up in two components propagating in ph
refractive media: a special case of three-soliton solution~10! of the
integrable 2-CNLS system for the parameters chosen as in the
~a! at z525 and~b! at z55.
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APPENDIX: FOUR-SOLITON SOLUTION

In this appendix for completeness, we present the form
the four-soliton solution of the 2-CNLS equations by gen
alizing the two- and three-soliton solutions of it, which c
04661
nt
e

.

f
-

be obtained by terminating the power series as

g( j )5xg1
( j )1x3g3

( j )1x5g5
( j )1x7g7

( j ) , ~A1a!

f 511x2f 21x4f 41x6f 61x8f 8 , ~A1b!

and solving the resulting set of linear partial different
equations recursively. It can be written as

qs5
N(s)

D
, s51,2, ~A2a!

where
N(s)5(
i 51

4

a i
(s)eh i1S 1

2D (
i , j ,l 51
( iÞ l )

4
~kl2ki !~a l

(s)k i j 2a i
(s)k l j !

~kj* 1ki !~kj* 1kl !
eh i1h j* 1h l

1S 1

12D (
i , j ,l ,

m,n51
( iÞ lÞn;

j Þm)

4 F ~kn2ki !~kl2ki !~kl2kn!~km* 2kj* !

~kj* 1ki !~kj* 1kl !~kj* 1kn!~km* 1ki !~km* 1kl !~km* 1kn!
G

3$a i
(s)@k lmkn j2k l j knm#1an

(s)@k l j k im2k i j k lm#1a l
(s)@knmk i j 2k imkn j#%e

h i1h j* 1h l1hm* 1hn

2S 1

144D (
i , j ,l ,m,

n,o,p51
( iÞ lÞnÞp;

j ÞmÞo)

4
1

D1
@~kp2ki !~kp2kl !~kp2kn!~kn2kl !~kn2ki !~kl2ki !~ko* 2km* !~ko* 2kj* !~km* 2kj* !#

3Ua i
(s) a l

(s) an
(s) ap

(s)

k i j k l j kn j kp j

k im k lm knm kpm

k io k lo kno kpo

Ueh i1h j* 1h l1hm* 1hn1ho* 1hp, ~A2b!

where

h i5ki~ t1 ik iz!, i 51,2,3,4, ~A2c!

D15~kj* 1ki !~kj* 1kl !~kj* 1kn!~kj* 1kp!

3~km* 1ki !~km* 1kl !~km* 1kn!~km* 1kp!

3~ko* 1ki !~ko* 1kl !~ko* 1kn!~ko* 1kp! ~A2d!

and
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D511 (
i , j 51

4
k i j

ki1kj*
eh i1h j* 1S 1

4D (
i , j ,l ,m51
( iÞ l ; j Þm)

4 (kl2ki)(km* 2kj* )(k i j k lm2k imk l j )

(kj* 1ki)(kj* 1kl)(km* 1ki)(km* 1kl)
eh i1h j* 1h l1hm*

1S 1

36D (
i , j ,l ,

m,n,o51
( iÞ lÞn;
j ÞmÞo)

4 (kn2kl)(kn2ki)(kl2ki)(ko* 2km* )(ko* 2kj* )(km* 2kj* )

D2

3U k i j k im k io

k l j k lm k lo

kn j knm kno

Ueh i1h j* 1h l1hm* 1hn1ho* 1
uk12k2u2uk22k3u2uk32k1u2uk42k1u2uk22k4u2uk32k4u2

)
i 51

4

(ki1ki* )uk11k2* u2uk11k3* u2uk11k4* u2uk21k3* u2uuk21k4* u2uk31k4* u2

3Uk11 k12 k13 k14

k21 k22 k23 k24

k31 k32 k33 k34

k41 k42 k43 k44

Ue(h11h1* 1h21h2* 1h31h3* 1h41h4* ). ~A2e!

In the above

D25~kj* 1ki !~kj* 1kl !~kj* 1kn!~km* 1ki !~km* 1kl !~km* 1kn!~ko* 1ki !~ko* 1kl !~ko* 1kn! ~A2f!

and

k i l 5
m~a i

(1)a l
(1)* 1a i

(2)a l
(2)* !

~ki1kl* !
, i ,l 51,2,3,4. ~A2g!
ns
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